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Abstract 
The least mean fourth (LMF) algorithm has several stability problems. Its stability depends on the variance and 

distribution type of the adaptive filter input, the noise variance, and the initialization of filter weights. A global 

solution to these stability problems was presented recently for a normalized LMF (NLMF) algorithm. The 

analysis is done in context of adaptive noise cancellation with Gaussian, binary, and uniform desired signals. 

The analytical model is shown to accurately predict the optimum solutions. Comparisons of the NLMF and 

NLMS algorithms are then made for various parameter selections. It is then shown under what conditions the 

NLMF algorithm is superior to NLMS algorithm for adaptive noise cancelling. 

Index Terms- Adaptive filtering, adaptive noise cancelling, least mean fourth algorithm, NLMS algorithm, and 

normalized least mean fourth algorithm. 

 

I. INTRODUCTION 
The least mean fourth (LMF) algorithm [1]-[17] 

outperforms well-known least mean square (LMS) 

algorithm [1], [2]. However, the LMF algorithm has 

several stability problems that may limit its 

applications. Reference [3] showed that the stability 

of the algorithm about wiener solution depends upon 

the adaptive filter input power and the noise power. 

References [4], [5], [7] showed that algorithm 

stability also depends on the initial value of the 

adaptive filter weights. References [8], [10], [11] 

showed that the LMF algorithm with unbounded 

regressors is not mean square stable even for the 

small values of the algorithm step-size. The above 

arguments suggest that LMF algorithm stability is 

more complicated than that of the LMS algorithm. 

Normalized versions of the LMF algorithm have 

been studied [6], [9], [12]-[14] in order to improve 

performance. None of these normalized LMF 

(NLMF) algorithms provide a global remedy to the 

above mentioned stability problems. The weight 

vector update term of the LMF algorithm is 

normalized by squared norm of the regressor in [6], 

[12]. However, algorithm stability depends upon the 

input signal power [14]-[16]. The weight vector 

update term of the LMF algorithm in [9], [13] is 

normalized by a weighted sum of the squared norm 

of the regressor and the squared norm of the error 

vector. This algorithm was shown to diverge in [14].  

An NLMF algorithm was proposed in [14], [15] with 

a weight vector update term that is normalized by the 

fourth power of the norm of the regressor. This  

 

 

normalization yields improvement in algorithm 

stability. 

Finally a globally stable NLMF algorithm was 

presented in [17]. This algorithm is stable for all 

statistics of the input, noise, and weight initialization. 

The normalizing term is fourth order in the regressor 

and second order in the estimation error. The 

regressor normalization stabilizes the algorithm 

against increasing input power and the 

unboundedness of the input distribution. The 

estimation error normalization term stabilizes the 

algorithm against increasing noise power and 

increasing initial weight deviation. The algorithm is 

stable for all values of the step- size range between 0 

and 2, a property similar to that of NLMS algorithm 

[1], [2]. However, the behavior of the globally stable 

NLMF algorithm is an extremely difficult task. This 

is primarily because the normalizing term is second 

order in the estimation error.  

Thus, the present paper is primarily concerned 

with the globally stable NLMF algorithm. The model 

is useful since it provides conditions under which the 

new algorithm outperforms the NLMF algorithm. 

The results in this paper are the first to provide a 

model of its mean square performance. The analysis 

is done in the context of adaptive noise cancelling 

(ANC). Optimum solutions display excellent 

agreement with the theory, Finally the stable NLMF 

algorithm is compared with the NLMS algorithm and 

conditions are determined for ANC applications 

when one is preferred over other. For, example 

consider a pilot in an airplane. When the pilot speaks 

into a microphone, the engine noise in the cockpit 
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combines with the noise signal. This additional noise 

makes the resultant signal heard by passengers of low 

quality information. The goal is to obtain a signal that 

contains the pilot voice but not the engine noise. 

Wecan cancel the noise with an adaptive filter if you 

obtain a sample of the engine noise and apply to 

adaptive filter. 

The paper is organized as follows. Following the 

introduction, section II presents the Normalized LMS 

algorithm. Section III presents the stable NLMF 

algorithm. Section IV presents simulation results. 

Section V compares the proposed NLMF algorithm 

with NLMS algorithm Finally, conclusions are given 

in section VI. 

 

II. NORMALIZED LMS ALGORITHM 
Determining  the  upper  bound  step  size  is  a  

problem  for  the  variable  step  size algorithm if 

the input signal to the adaptive filter is non-

stationary. The fastest convergence is achieved with 

the choice of step size as follows: 

 

𝜇𝑚𝑎𝑥 = 1/ 𝜆𝑚𝑎𝑥 + 𝜆𝑚𝑖𝑛                    (2.1) 

The maximum step size in equation (2.1) 

does not always produce the stable and fast 

convergence, (2/3) µ max is a rule of thumb for 

LMS algorithm.  To increase the convergence 

speed Normalized LMS (NLMS) algorithm is a 

natural choice.  

The NLMS is always the favorable choice of 

algorithm for fast convergence speed and for non-

stationary input. The value of 𝜇𝜎𝑥
2  directly affects 

the convergence rate and stability of the LMS 

filter. In practice, the correction term applied to the 

estimated tap weight vector w (n) at the nth 

iteration is normalized with respect to squared 

Euclidean norm of the tap input x (n) at the (n-1)th 

iteration. 

𝑊 𝑛 + 1 = 𝑊 𝑛 +
𝛼

  𝑥 𝑛   
2 𝑒 𝑛 𝑥(𝑛)         (2.2) 

Apparently, the convergence rate of the 

NMLS algorithm is directly proportional to the 

NLMS adaptation constant α, i.e. the NLMS 

algorithm is independent of the input signal 

p o w e r .  By  choosing α so  as  to  optimize  the  

convergence  rates  of  the algorithms, the NLMS 

algorithm converges more quickly than the LMS 

algorithm. It can also be stated that the NLMS is 

convergent in mean square if the adaptation 

constant     is from 0 to 2 (however a more practical 

step size for NLMS is always less than unity) 0<α<2 

Despite this particular edge that the NLMS 

exhibits, it does have a slight problem of its own. 

When the input vector x(n) is small, instability may 

occur since we are trying to perform numerical 

division by small value of the Euclidean Norm 

However,  this  can  be  easily  overcome  by  

appending  a  positive  constant  to  the denominator 

in (2.2) such that 

𝑊 𝑛 + 1 = 𝑊 𝑛 +
𝛼

𝑐+  𝑥 𝑛   
2 𝑒 𝑛 𝑥(𝑛)         (2.3) 

Where 𝑐 +   𝑥 𝑛   
2
 is the normalization factor. With 

this, more robust and reliable implementation of the 

NLMS algorithm is obtained.  

A well-known tool that can be used to increase 

the stability of adaptive filtering algorithm is 

normalization. It is well known that the stability of 

the LMS algorithm is dependent of the input power 

of the adaptive filter. This makes it very hard, if not 

possible, to choose a step size that guarantees 

stability of the algorithm where there is lack of 

knowledge about the input power. This is solved by 

normalizing the weight vector update term  𝑥 𝑛   
2
. 

The resulting algorithm is termed as normalized LMS 

algorithm. This algorithm is stable for all input 

power, noise power, and the initial setting of adaptive 

filter weights, as long as step size is between 0 and 2. 

For the case of stationary inputs, the cost 

function, also referred to as index of performance, is 

defined as the mean -square error i.e., the mean –

square value of the difference between the desired 

response and filter output. The cost function is 

precisely a second-order function of the tap weights 

in the filter. The dependence of the mean-square error 

on the unknown tap weights may be viewed as a 

minimum point. 

To develop a recursive algorithm for updating 

the tap weights of the adaptive filter, we proceed in 

two stages. First we use an iterative procedure to 

solve the equations; the iterative procedure is based 

on the method of steepest descent, which is a well-

known technique in optimization theory. 

 
III. THE STABLE NLMF 

ALGORITHM. 

Consider the case of ANC [1] shown in fig. The 

primary input to the canceller s(n) (also called plant 

output) is given by 

 

𝑠 𝑛 = 𝐺𝑇𝑋 𝑛 + 𝑏(𝑛)                                     (3.1) 

where 

               𝐺 = (𝑔1, 𝑔2  .  .  .  .  𝑔𝑁)𝑇        (3.2)
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is the vector compose of plant parameters,  

𝑋 𝑛 = (𝑥 𝑛 , 𝑥 𝑛 − 1 , .  .  .  𝑥 𝑛 − 𝑁 + 1            

(3.3) 

 

is the regressor vector at time n, where x(n) is the 

reference input, N is the number of plant parameters, 

b(n) is the desired signal and (.)
T
 is the transpose of 

(.). The ANC is made by and adaptive FIR filter 

whose length is assumed equal to that of the plant. 

The adaptive filter provides an estimate of the noise 

𝐺𝑇𝑋(𝑛)  corrupting the desired signal b(n). This 

estimate is subtracted from the canceller primary 

input to yield the canceller output e(n) given by 

𝑒 𝑛 = 𝑠 𝑛 − 𝐻𝑇 𝑛 𝑋(𝑛)                                  (3.4) 

 

Where 𝐻 𝑛 = [ℎ1 𝑛 , ℎ2 𝑛 , .  .  .  . , ℎ𝑁 𝑛 ]𝑇  

 

is the weight vector of the adaptive filter. When the 

adaptive filter weights are near the plant parameters, 

the noise is cancelled and e(n) will be near the 

desired signal b(n).  

 The adaptation algorithm studied in this 

paper is the globally stable NLMF algorithm [17] 

defined by the stochastic recursion  

 

𝐻 𝑛 + 1 

= 𝐻 𝑛 +
𝜇𝑒3 𝑛 𝑋(𝑛)

𝑋𝑇  𝑛 𝑋 𝑛 (𝑋𝑇  𝑛 𝑋 𝑛 + 𝑒2   𝑛 )
 

                                                      0<µ<2               

(3.5) 

where µ>0 is the algorithm step-size. Note that (3.5) 

behaves like the NLMS algorithm for large 𝑒 𝑛  and 

behaves like one form of the NLMF algorithm 

studied in [16] for small𝑒 𝑛 . This observation is 

important in the subsequent analysis. 

 The weight deviation vector is defined by 

  

                        𝑉 𝑛 = 𝐻 𝑛 − 𝐺                  

(3.6) 

The instantaneous MSE is given by 𝐸(𝑉𝑇 𝑛 𝑉 𝑛 ) 

where E denotes the mathematical expectation Due to 

(3.1), (3.4) and (3.6), 

                         𝑒 𝑛 = 𝑏 𝑛 − 𝑉𝑇 𝑛 𝑋(𝑛)                  
(3.7)  

The analysis of (3.5) is complicated by the presence 

of 𝑒2(𝑛)  in the denominator of the weight vector 

update term. Given this difficulty of the problem, the 

approximations made in this paper are reasonable. 

The proposed model helps users to decide if they 

should use the NLMF algorithm in a given 

application. This model will also help other 

researchers with new ideas for the analysis of 

nonlinear adaptive algorithms. The idea behind (3.5) 

is a combination of the ideas of the algorithms in [9] 

and [14]. The normalizing term in (3.5) (i.e. 

𝑋𝑇  𝑛 𝑋 𝑛 (𝑋𝑇  𝑛 𝑋 𝑛 + 𝑒2   𝑛 ) is a fourth order 

polynomial in X(n). This term stabilizes the 

algorithm against the increase of the input variance 

since  𝑒3 𝑛 𝑋(𝑛)  is a fourth order polynomial in 

X(n). The normalizing term also stabilizes the 

algorithm for inputs with unbounded distributions, 

such as Gaussian inputs. The normalizing term in 

(3.5) also includes𝑒2   𝑛 . This term stabilizes the 

algorithm against the increase of noise variance and 

the increases of the squared weight deviation, since 

𝑒 𝑛 = 𝑏 𝑛 − 𝑉𝑇 𝑛 𝑋(𝑛).          

     

IV. SIMULATION RESULTS OF NLMF 

AND NLMS ALGORITHMS 
This section provides simulation results of 

NLMF and NLMS algorithms. The simulations are 

done for the case of adaptive noise cancelling with 

Gaussian, Binary and Uniform desired signals. The 

plant is a time-invariant FIR filter with equal 

parameters; 𝑔𝑖 = 𝐾; i=1,2, . . . ,N.  The initial weight 

vector of the adaptive filter is an all zero vector. The 

regressor vector is given by (3.3), where x(n) is the 

plant reference input.. K is selected much greater 

than one to yield a large initial weight deviation. This 

selection causes instability of the LMF algorithm and 

other NLMF algorithms. Thus, the globally stable 

NLMF algorithm is needed in this environment. 
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Fig 2: Simulated result of Noise Cancellation in ECG 

signals for a) Gaussian b) Binary c) Uniform using 

NLMF and NLMS algorithms. 

 

Iterati

ons 

Gaussian Binary Uniform 

µ= 

0.02 

NLM

S          

µ=1 

NLM

F 

µ= 

0.02 

NLM

S 

µ=

1 

NL

MF 

µ= 

0.02 

NL

MS 

µ=1 

NLMF 

1000 

.0090 .0051 .0060 .00

43 

.012

0 

.0092 

2000 

.0073 .0048 .0082 .00

59 

.010

3 

.0067 

3000 

.0075 .0055 .0103 .00

49 

.009

9 

.0066 

4000 

.0063 .0050 .0088 .00

44 

.008

7 

.0074 

5000 

.0060 .0050 .0081 .00

43 

.008

4 

.0073 

6000 

.0055 .0048 .0073 .00

41 

.007

9 

.0071 

7000 

.0053 .0047 .0069 .00

39 

.006

9 

.0078 

8000 

.0049 .0046 .0069 .00

39 

.006

8 

.0070 

9000 

.0048 .0046 .0073 .00

43 

.006

9 

.0072 

10000 

.0046 .0045 .0097 .00

52 

.006

4 

.0065 

 

Table 1:  MSE Comparison after Performing Various 

Number of Iterations in NLMS, NLMF for ECG 

(Gaussian, Binary and Uniform signals) 

 

V. COMPARISONS OF NLMS AND 

NLMF ALGORITHMS 
The NLMS algorithm is well-known and is often 

used as a benchmark for evaluating new adaptive 

algorithms. This section compares the MSE 

performance of the stable NLMF algorithm to that of 

the NLMS algorithm using simulations. The 

comparisons shown in figure 3 for the MSE behavior 

for each algorithm for 𝜇𝑁𝐿𝑀𝑆 = 0.02, 𝜇𝑁𝐿𝑀𝐹 = 1 . 

The NLMS algorithm always converges quickly to 

(noise variable to input variable). This means that 

NLMS is preferred to NLMF for 0.02 as shown in 

figure 3 and the NLMF algorithm always converges 

quickly to (noise variable to input variable). This 

means NLMF is preferred to NLMS for 1. The 

following figure shows the mean-square 

performances of the ECG signal with Gaussian, 

Binary and Uniform desired signals. The graph is 

plotted between number of iterations versus the 

mean-square error. 
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Fig 3: MSE (n) simulation results NLMS-(red), 

NLMF-(green) for 𝜇𝑁𝐿𝑀𝑆 = 0.02,  𝜇𝑁𝐿𝑀𝐹 = 1 (a) 

Gaussian (b) Binary (c) uniform. 

 

VI. CONCLUSIONS 
The Mean Square Error behavior of globally 

stable NLMF algorithm for Gaussian, binary and 

uniform signals for adaptive noise cancelling 

applications are shown. Optimum solutions show that 

analytical model accurately predicts the mean square 

error behavior. Comparisons of the globally stable 

NLMF and NLMS algorithms were made for various 

parameter selections. The NLMF algorithm is shown 

superior to NLMS algorithm for adaptive noise 

cancelling.  
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